Dynamics of superfluid ⁴He: Single– and multiparticle excitations

Dec. 7, 2016

Theory: C. E. Campbell, E. Krotscheck, T. Lichtenegger Experiments: Ketty Beauvois, Björn Fåk, Henri Godfrin, Hans Lauter, Jacues Olivier, Ahmad Sultan...

Sub-eV, Dec. 7-9, 2016

Outline

- Generalities Setting the scene
 - Why helium physics?
 - Many-Body Theory
 - Correlated wave functions: Bragbook
 - Dynamic Many-Body Theory
- The Helium Liquids
 - Confronting Theory and Experiment
 - Dynamic Many–Body Theory
- The physical mechanisms
 - What is a roton?
 - Experimental challenge: ⁴He in 2D
 - Consequence of roton energy
 - Mode-mode couplings
- Summary
- 6 Acknowledgements

What is interesting about helium physics?

Quantum Theory of Corresponding States:

How "quantum" is a (quantum) liquid?

Let
$$V_{JL}(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

$$x = \frac{r}{\sigma}$$
 $V_{LJ}(r) = \epsilon v(x)$

Then
$$\frac{1}{\epsilon}H(\mathbf{x}_1\ldots,\mathbf{x}_N)=-\frac{\Lambda^2}{2}\sum_i\nabla_{\mathbf{x}_i}^2+\sum_{i< j}v(|\mathbf{x}_i-\mathbf{x}_j|)$$

Quantum Parameter:
$$\Lambda = \left(\frac{\hbar^2}{m\epsilon\sigma^2}\right)^{\frac{1}{2}}$$

 $\Lambda \approx 3$ for He, $\Lambda \approx 1 - 2$ for H₂, HD, D₂, $\Lambda < 0.1$ for rare gases.

Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

Double differential cross section: What experimentalists measure

$$\frac{\partial^2 \sigma}{\partial \mathbf{\Omega} \, \partial \hbar \omega} = b^2 \left(\frac{\mathbf{k}_f}{\mathbf{k}_i} \right) \, \mathbf{S}(\mathbf{k}, \hbar \omega)$$

Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

Double differential cross section: What experimentalists measure

$$\frac{\partial^2 \sigma}{\partial \mathbf{\Omega} \, \partial \hbar \omega} = b^2 \left(\frac{\mathbf{k}_f}{\mathbf{k}_i} \right) \, \mathbf{S}(\mathbf{k}, \hbar \omega)$$

Dynamic structure function: The definitions

$$S(\mathbf{k}, \hbar\omega) = \frac{1}{N} \sum_{n} \left| \left\langle \Psi_{n} \middle| \rho_{\mathbf{k}} \middle| \Psi_{0} \right\rangle \right|^{2} \delta(\hbar\omega - \varepsilon_{n})$$

$$H \big| \Psi_0 \big\rangle = E_0 \big| \Psi_0 \big\rangle \qquad H \big| \Psi_n \big\rangle = [E_0 + \varepsilon_n] \, \big| \Psi_n \big\rangle$$

Observables: What neutron scatterers measure

Understanding the dynamics of the helium liquids

Double differential cross section: What experimentalists measure

$$\frac{\partial^2 \sigma}{\partial \mathbf{\Omega} \, \partial \hbar \omega} = b^2 \left(\frac{k_f}{k_i} \right) \, \mathbf{S}(\mathbf{k}, \hbar \omega)$$

Dynamic structure function: The definitions

$$S(\mathbf{k}, \hbar\omega) = \frac{1}{N} \sum_{n} \left| \left\langle \Psi_{n} \middle| \rho_{\mathbf{k}} \middle| \Psi_{0} \right\rangle \right|^{2} \delta(\hbar\omega - \varepsilon_{n})$$

$$H|\Psi_{0}\rangle = E_{0}|\Psi_{0}\rangle$$
 $H|\Psi_{n}\rangle = [E_{0} + \varepsilon_{n}]|\Psi_{n}\rangle$

Density-density response function: What theorists calculate

$$S(\mathbf{k}, \hbar\omega) = -\frac{1}{\pi} \Im m \chi(\mathbf{k}, \hbar\omega)$$

$$\delta\rho_1(\mathbf{r}, t) = \int d^3r' dt' \ \chi(\mathbf{r}, \mathbf{r}'; t - t') \delta V_{\text{ext}}(\mathbf{r}', t')$$

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971 EXCITATION ENERGY (*K) Fro. 7. The experimental results for the energies of the one-phonon excitations at 1.1 °K.

The characteristic features:

Phonon branch

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971

The characteristic features:

- Phonon branch
- The famous "roton minimum", Energy \triangle and wave number k_{\triangle}

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971

The characteristic features:

- Phonon branch
- The famous "roton minimum",
 Energy Δ and wave number k_Δ
- The "maxon"

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971

The characteristic features:

- Phonon branch
- The famous "roton minimum", Energy Δ and wave number k_{Δ}
- The "maxon"
- The "Pitaevskii Plateau", Energy $\approx 2\Delta$, wave number up to $2k_{\Delta}$

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971

The characteristic features:

- Phonon branch
- The famous "roton minimum",
 Energy Δ and wave number k_Δ
- The "maxon"
- The "Pitaevskii Plateau", Energy
 ≈ 2∆, wave number up to 2k_∆

Questions:

• What are the physical mechanisms behind these features?

R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971).

Spectrum by Cowley and Woods 1971

The characteristic features:

- Phonon branch
- The famous "roton minimum",
 Energy Δ and wave number k_Δ
- The "maxon"
- The "Pitaevskii Plateau", Energy $\approx 2\Delta$, wave number up to $2k_{\Delta}$

Questions:

- What are the physical mechanisms behind these features?
- Is there anything else to be seen?

.. of the theorist and

The theorist's tools:

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

.. of the theorist and

The theorist's tools:

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle +$$

.. of the theorist and the experimentalist

The theorist's tools:

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle +$$

The experimentalist's tools: (IN5)

.. of the theorist and the experimentalist

The theorist's tools:

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle +$$

The experimentalist's tools: (IN5)

Getting the same answer?

.. of the theorist and the experimentalist

The theorist's tools:

$$H(t)|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle +$$

The experimentalist's tools: (IN5)

Getting the same answer?

Is there anything else to be seen?

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

- Particle number, mass
- Interactions

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

Energetics

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

- Energetics
- Structure

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

Energetics

Thermodynamics

- Structure
- Excitations

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

Energetics

Thermodynamics

Structure

Finite-size properties

Excitations

Hamiltonian, wave functions, observables

Postulate...

An empirical, non-relativistic microscopic Hamiltonian

$$H = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 + \sum_{i} V_{\text{ext}}(i) + \sum_{i < j} V(i, j)$$

Particle number, mass

Statistics (Fermi, Bose)

Interactions

Temperature

Turn on your computer and..

Calculate from no other information...

Energetics

Thermodynamics

Structure

Finite-size properties

Excitations

Phase transitions (?)...

Correlated wave functions: Bragbook

A "simple quick and dirty" method:

$$\Psi_0(1,\ldots,N) = \exp \frac{1}{2} \left[\sum_i u_1(\mathbf{r}_i) + \sum_{i < j} u_2(\mathbf{r}_i,\mathbf{r}_j) + \ldots \right] \Phi_0(1,\ldots,N)$$

$$\equiv F(1,\ldots,N) \Phi_0(1,\ldots,N)$$

 $\Phi_0(1,\ldots,N)$ "Model wave function" (Slater determinant)

Equation of state for ⁴He and ³He:

Correlated wave functions: Bragbook

A "simple quick and dirty" method:

 $\Phi_0(1,\ldots,N)$

$$\Psi_0(1,\ldots,N) = \exp \frac{1}{2} \left[\sum_i u_1(\mathbf{r}_i) + \sum_{i < j} u_2(\mathbf{r}_i,\mathbf{r}_j) + \ldots \right] \Phi_0(1,\ldots,N)$$

$$\equiv F(1,\ldots,N) \Phi_0(1,\ldots,N)$$

"Model wave function" (Slater determinant)

Structure functions of ⁴He and ³He

(Multi-)particle fluctuations for bosons

Build on the success story for the ground state: Make the correlations time dependent!

$$|\Phi(t)
angle = \mathrm{e}^{-iE_0t/\hbar} rac{1}{\mathcal{N}(t)} \mathit{F} \mathrm{e}^{rac{1}{2}\delta U} |\Phi_0
angle \ ,$$

 $|\Phi_0\rangle$: model ground state, $\delta U(t)$: excitation operator, $\mathcal{N}(t)$: normalization.

Bosons:

$$\delta U(t) = \sum_{i} \delta u^{(1)}(\mathbf{r}_{i};t) + \sum_{i < j} \delta u^{(2)}(\mathbf{r}_{i},\mathbf{r}_{j};t) + \dots$$

(Multi-)particle fluctuations for bosons and fermions

Build on the success story for the ground state: Make the correlations time dependent!

$$|\Phi(t)
angle = \mathrm{e}^{-iE_0t/\hbar} rac{1}{\mathcal{N}(t)} F \mathrm{e}^{rac{1}{2}\delta U} |\Phi_0
angle \ ,$$

 $|\Phi_0\rangle$: model ground state, $\delta U(t)$: excitation operator, $\mathcal{N}(t)$: normalization.

Fermions:

$$\delta U(t) = \sum_{\mathbf{p},\mathbf{h}} \delta u_{\mathbf{p},\mathbf{h}}^{(1)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{h}} + \sum_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'} \delta u_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'}^{(2)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}'}^{\dagger} a_{\mathbf{h}} a_{\mathbf{h}'}$$

(Multi-)particle fluctuations for bosons and fermions

Build on the success story for the ground state: Make the correlations time dependent!

$$|\Phi(t)
angle = \mathrm{e}^{-iE_0t/\hbar} rac{1}{\mathcal{N}(t)} F \mathrm{e}^{rac{1}{2}\delta U} |\Phi_0
angle \ ,$$

 $|\Phi_0\rangle$: model ground state, $\delta U(t)$: excitation operator, $\mathcal{N}(t)$: normalization.

Fermions:

$$\delta U(t) = \sum_{\mathbf{p},\mathbf{h}} \delta u_{\mathbf{p},\mathbf{h}}^{(1)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{h}} + \sum_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'} \delta u_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'}^{(2)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}'}^{\dagger} a_{\mathbf{h}} a_{\mathbf{h}'}$$

 \bullet $\delta u^{(2)}$ describes fluctuations of the short-ranged structure

(Multi-)particle fluctuations for bosons and fermions

Build on the success story for the ground state: Make the correlations time dependent!

$$|\Phi(t)
angle = \mathrm{e}^{-iE_0t/\hbar} rac{1}{\mathcal{N}(t)} F \mathrm{e}^{rac{1}{2}\delta U} |\Phi_0
angle \ ,$$

 $|\Phi_0\rangle$: model ground state, $\delta U(t)$: excitation operator, $\mathcal{N}(t)$: normalization.

Fermions:

$$\delta U(t) = \sum_{\mathbf{p},\mathbf{h}} \delta u_{\mathbf{p},\mathbf{h}}^{(1)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{h}} + \sum_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'} \delta u_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'}^{(2)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}'}^{\dagger} a_{\mathbf{h}} a_{\mathbf{h}'}$$

- \bullet $\delta u^{(2)}$ describes fluctuations of the short-ranged structure
- The physical content of $\delta u^{(2)}$ is beyond mean field theory!

What these amplitudes do for bosons

$$\delta U(t) = \sum_{i} \delta u^{(1)}(\mathbf{r}_{i};t)$$

Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons and fermions

$$\delta U(t) = \sum_{\mathbf{p},\mathbf{h}} \delta u_{\mathbf{p},\mathbf{h}}^{(1)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{h}}$$

Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons

$$\delta U(t) = \sum_{i} \delta u^{(1)}(\mathbf{r}_{i}; t)$$

Dynamic Many-Body Theory (DMBT)

What these amplitudes do for bosons and fermions

$$\delta U(t) = \sum_{\mathbf{p},\mathbf{h}} \delta u_{\mathbf{p},\mathbf{h}}^{(1)}(t) a_{\mathbf{p}}^{\dagger} a_{\mathbf{h}}$$

$$+ \sum_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'} \delta u^{(2)}_{\mathbf{p},\mathbf{h},\mathbf{p}',\mathbf{h}'}(t) a^{\dagger}_{\mathbf{p}} a^{\dagger}_{\mathbf{p}'} a_{\mathbf{h}} a_{\mathbf{h}'}$$

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

One-body fluctuations: Feynman(RPA) spectrum

$$\delta U(t) = \sum_{i} e^{i(\mathbf{k} \cdot \mathbf{r}_{i} - \omega t)}$$

Feynman (RPA)-Theory

$$\hbar\omega(\mathbf{k}) = \hbar^2 \mathbf{k}^2 / 2m S(\mathbf{k})$$

$$\hbar\omega(\mathbf{k}) = \mathbf{c}\mathbf{k}$$
 as $\mathbf{k} \to \mathbf{0}$

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Two-body fluctuations:

Feynman-Cohen "backflow"

$$\delta U(t) = \sum_{i} e^{i(\mathbf{k} \cdot \tilde{\mathbf{r}}_{i} - \omega t)}$$

$$\tilde{\mathbf{r}}_i = \mathbf{r}_i + \sum_{i \neq i} \eta(\mathbf{r}_{ij}) \mathbf{r}_{ij}$$

Single-Pair-Fluctuations

Bosons: ⁴He in 3D

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

Multi-Pair-Fluctuations

Many-body fluctuations:

•

$$\delta U(t) = \sum_{i} \delta u^{(1)}(\mathbf{r}_{i}; t) + \sum_{i < j} \delta u^{(2)}(\mathbf{r}_{i}, \mathbf{r}_{j}; t) + \dots$$

Stationarity principle

$$\delta \int dt \Big\langle \Phi(t) \Big| H + \delta H(t) - i\hbar \frac{\partial}{\partial t} \Big| \Phi(t) \Big\rangle = 0$$

Bosons: ⁴He in 3D

Confronting Theory and Experiment: Experiments by Godfrin group in Grenoble

Experiments

Multi-Pair-Fluctuations

Many-body fluctuations:

•

$$\delta U(t) = \sum_{i} \delta u^{(1)}(\mathbf{r}_{i};t) + \sum_{i< j} \delta u^{(2)}(\mathbf{r}_{i},\mathbf{r}_{j};t) + \dots$$

Stationarity principle

$$\delta \int dt \Big\langle \Phi(t) \Big| H + \delta H(t) - i\hbar \frac{\partial}{\partial t} \Big| \Phi(t) \Big\rangle = 0$$

• Brillouin-Wigner perturbation theory in the basis $\{e^{i\sum_i \mathbf{k}\cdot\mathbf{r}_i}|\Psi_0\rangle\}$.

Dynamic Structure Function

$$S(\mathbf{k},\omega) = -\frac{1}{\pi} \Im m \int d^3 r e^{i\mathbf{k}\cdot\mathbf{r})} \chi(\mathbf{r},\mathbf{r}';\omega).$$

Density–density response function

$$\chi(\mathbf{k},\omega) = \frac{S(\mathbf{k})}{\omega - \Sigma(\mathbf{k},\omega)} + \frac{S(\mathbf{k})}{-\omega - \Sigma(\mathbf{k},-\omega)},$$

Self-energy

$$\Sigma(k,\omega) = \varepsilon_0(k) + \frac{1}{2} \int \frac{d^3pd^3q}{(2\pi)^3\rho} \frac{\delta(\mathbf{k} - \mathbf{p} - \mathbf{q}) \left| V_3(\mathbf{k}; \mathbf{p}, \mathbf{q}) \right|^2}{\omega - \Sigma(p, \omega - \varepsilon_0(q)) - \Sigma(q, \omega - \varepsilon_0(p))}$$

• 3-phonon vertex $V_3(\mathbf{k}; \mathbf{p}, \mathbf{q})$

Dynamic Many-Body Theory

A few diagrams

What is a roton?

Quantum Statistical Mechanics in the Natural Sciences Studies in the Natural Sciences Vo'ume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russell J. Donnelly

Abstract

Onsager's suggestion that a roton is a vortex ring of molecular size is discussed, and a review of experimental evidence together with theories based on this idea are presented.

The physical mechanisms What is a roton?

Is it

Quantum Statistical Mechanics in the Natural Sciences Studies in the Natural Sciences Vo'ume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russell J. Donnelly

Abstract

Onsager's suggestion that a roton is a vortex ring of molecular size is discussed, and a review of experimental evidence together with theories based on this idea are presented.

Or

Is the Roton in Superfluid ⁴He the Ghost of a Bragg Spot?*

P. Nozières

Laboratoire d'Etude des Propriétés Electroniques des Solides, Centre National de la Recherche Scientifique, B.P.166, 38042 Grenoble Cedex 9, France E-mail: nozieres@ill.fr

What is a roton?

Is it

Quantum Statistical Mechanics in the Natural Sciences Studies in the Natural Sciences Vo'ume 4, 1974, pp 359-402

The Ghost of a Vanished Vortex Ring

Russell J. Donnelly

Abstract

Onsager's suggestion that a roton is a vortex ring of molecular size is discussed, and a review of experimental evidence together with theories based on this idea are presented.

Or

Is the Roton in Superfluid ⁴He the Ghost of a Bragg Spot?*

P. Nozières

Laboratoire d'Etude des Propriétés Electroniques des Solides, Centre National de la Recherche Scientifique, B.P.166, 38042 Grenoble Cedex 9, France E-mail: noziere@ill.fr

If so, could there be a second Bragg peak?
 (None found in 3D ⁴He)

Theoretical predictions - An experimental challenge

• Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;

- Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;
- Roton paramaters within error bars of Monte Carlo calculations;

- Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;
- Roton paramaters within error bars of Monte Carlo calculations;
- Around saturation, not much new;

- Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;
- Roton paramaters within error bars of Monte Carlo calculations;
- Around saturation, not much new;
- Close to the liquid-solid phase transition, a weak, secondary "roton"!

Theoretical predictions – An experimental challenge

- Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;
- Roton paramaters within error bars of Monte Carlo calculations;
- Around saturation, not much new;
- Close to the liquid-solid phase transition, a weak, secondary "roton"!
- Monte Carlo calculations dynamically inconsistent

Theoretical predictions – An experimental challenge

- Below saturation ($\rho = 0.044 \, \text{Å}^{-2}$) strong anomalous dispersion;
- Roton paramaters within error bars of Monte Carlo calculations;
- Around saturation, not much new;
- Close to the liquid-solid phase transition, a weak, secondary "roton"!
- Monte Carlo calculations dynamically inconsistent
- Still a challenge for neutron scatterer!

Sum rules

$$\int d\omega \Im m\chi(\mathbf{k},\omega) = S(\mathbf{k})$$

$$\int d\omega \omega \Im m \chi(\mathbf{k},\omega) = \frac{\hbar^2 \mathbf{k}^2}{2m}$$

Sum rules

$$\int d\omega \Im m\chi(\mathbf{k},\omega) = S(\mathbf{k})$$

$$\int d\omega \omega \Im m \chi(\mathbf{k},\omega) = \frac{\hbar^2 \mathbf{k}^2}{2m}$$

 If we assume only one phonon, we get Feynman (off by a factor of 2)

Sum rules

$$\int d\omega \Im m\chi(\mathbf{k},\omega) = S(\mathbf{k})$$

$$\int d\omega \omega \Im m \chi(\mathbf{k},\omega) = \frac{\hbar^2 \mathbf{k}^2}{2m}$$

- If we assume only one phonon, we get Feynman (off by a factor of 2)
- Need a multi(quasi-)particle continuum to get the energetics right!

Mode-mode couplings

Experiments

Theory

The "Pitaevskii plateau"

A perturbation with momentum ${\bf q}$ and energy ω can decay into two rotons ${\bf q}_{\Delta}^{(1)}$ and ${\bf q}_{\Delta}^{(2)}$ with $|{\bf q}_{\Delta}^{(1)}|=|{\bf q}_{\Delta}^{(2)}|=q_{\Delta}$ under momentum and energy and conservation $\omega=2\Delta$.

 The roton momenta may be aligned

$$|\mathbf{q}| \leq 2q_R$$

Mode-mode couplings

Experiments

Theory

The "Pitaevskii plateau"

A perturbation with momentum ${\bf q}$ and energy ω can decay into two rotons ${\bf q}_{\Delta}^{(1)}$ and ${\bf q}_{\Delta}^{(2)}$ with $|{\bf q}_{\Delta}^{(1)}|=|{\bf q}_{\Delta}^{(2)}|=q_{\Delta}$ under momentum and energy and conservation $\omega=2\Delta$.

 The roton momenta may be aligned

$$|\mathbf{q}| \leq 2q_R$$

or anti-aligned

$$|\mathbf{q}| \geq 0$$

Mode-mode couplings

Experiments

Theory

The "ghost phonon"

Phonon dispersion relation

$$\omega(q) = cq(1 + \gamma q^2)$$

- "normal dispersion": $\gamma < 0$ \Rightarrow phonons are stable
- $\begin{tabular}{l} \bullet \begin{tabular}{l} ``anomalous dispersion": $\gamma > 0 \\ $\Rightarrow $ phonons can decay \end{tabular}$
- \Rightarrow ⁴He at zero pressure is borderline between normal and anomalous, $\gamma \approx 0.1$
- \Rightarrow Perturbations with momentum (**q**, ω) can decay into two phonons with (**q**/2, ω /2) as long as the dispersion relation is almost linear up to q/2.

Mode-mode couplings

Experiments

Theory

Maxon-roton coupling

A similar but less sharply defined process

What we know today

Quantitative agreement between experiments in 3D;

- Quantitative agreement between experiments in 3D;
- Prediction of a secondary roton–like mode in 2D ⁴He;

- Quantitative agreement between experiments in 3D;
- Prediction of a secondary roton-like mode in 2D ⁴He;
- Prediction of maxon damping at high pressure ⁴He

- Quantitative agreement between experiments in 3D;
- Prediction of a secondary roton–like mode in 2D ⁴He;
- Prediction of maxon damping at high pressure ⁴He
- Structures are more pronounced in 2D;

- Quantitative agreement between experiments in 3D;
- Prediction of a secondary roton-like mode in 2D ⁴He;
- Prediction of maxon damping at high pressure ⁴He
- Structures are more pronounced in 2D;
- 1 \rightarrow 2 and 2 \rightarrow 1 processes are not the end of the story but do not lead to sharp features.

Thanks to collaborators in this project

C. E. Campbell

F. M. Gasparini

H. Godfrin (and his team)

T. Lichtenegger

Univ. Minnesota University at Buffalo CNRS Grenoble

University at Buffalo

Thanks for your attention

and thanks to our funding agency:

Der Wissenschaftsfonds.